
The Complexity of
Compression

Rahul Santhanam
University of Oxford

Plan of Talk

• Motivation
• Intro to Kolmogorov Complexity
• Resource-Bounded Variants
• Learning
• Cryptography

Plan of Talk

• Motivation
• Intro to Kolmogorov Complexity
• Resource-Bounded Variants
• Learning
• Cryptography

Data Compression

• Data compression is a fundamental task in computer science
• Communication: When sending data across a communication channel, we

would like it to be as compact as possible to save on time and space costs
• Learning: At a high level, the main goal in learning is to find a compact

hypothesis that explains the training data and performs well on the test data
• Cryptography: Encryption relies on the ability to efficiently produce

pseudorandom strings that are indistinguishable from random strings, though
pseudorandom strings are compressible in principle and random strings are
not

• Theoretical foundations for data compression
• How do we characterize the inherent compressibility of a dataset?
• Is there an efficient procedure to optimally compress a dataset?

Shannon’s Theory

• Shannon’s theory of source coding provides good answers to these
questions when we are dealing with distributions on data

• In this case, we know that the entropy of a distribution is the optimal
expected compression length, and the efficient Huffman coding procedure
achieves this

• Useful if there is a reasonable way to model distributions, eg., the Zipf law on
natural language utterances

• But what if we have no prior knowledge of this form, and we are interested in
the inherent compressibility of data (modelled simply as a finite string)?

Inherent Compressibility

• It is clear that some strings should be much compressible than others,
eg., a string of N zeroes should be more compressible than a random
string

• Explicit redundancies in strings, such as re-occurring patterns, are
exploited in algorithms such as the Lempel-Ziv algorithm and its
variants

• But there could be redundancy that is not based on repetition
• Eg., consider the strings “3141592653” and “2718281828”
• Anyone with a basic knowledge of calculus can see that these are easily

distinguishable from random 10-digit strings

Plan of Talk

• Motivation
• Intro to Kolmogorov Complexity
• Resource-Bounded Variants
• Learning
• Cryptography

Foundations of Compressibility

• A compression scheme over an alphabet Σ is a pair of functions C, D:
Σ* → Σ* such that for all x in Σ*, D(C(x)) = x, and ideally

• The compressor C is close to optimal in that |C(x)| is not much larger than
|C’(x)| for every x and every compression scheme C’

• The de-compressor D is (efficiently) computable
• C is (efficiently) computable

• These criteria are in tension with each other. For now we prioritize
optimality, and define a measure called Kolmogorov complexity which
captures the inherent compressibility of a string

Defining Kolmogorov Complexity

• Let U be a fixed universal Turing machine
• For any string x in Σ*, K(x) is min {|p|: U(p, ε) = x}
• Intuitively, K(x) is the size of the smallest program that produces x

when run on the empty string
• Examples

• K(0N) ≤ log(N) + O(1), since we can describe 0N (in a way that makes sense to a
computable de-compressor) by using log(N) bits to describe N and O(1) bits to
describe a program that outputs 0N given N

• K(πN) ≤ log(N) + O(1), where πN is the string consisting of the first N bits of π

Basic Properties

• (1) For every x in Σ*, K(x) ≤ |x| + O(1)
• Any string x can be described by itself together with a program p of constant

size that just prints x out

• (2) For each integer n, there is x of length n such that K(x) ≥ n
• Straightforward counting argument
• For any i, there are at most 2i strings of Kolmogorov complexity i (since there

are at most 2i descriptions of length i)
• So there are at most 2n-1 strings of Kolmogorov complexity < n
• By pigeonhole principle, there is a string x of length n with K(x) ≥ n

Near-Optimality

• For any compression scheme with compressor C and computable de-
compressor D, for every string x, K(x) ≤ C(x) + O(1)

• The reason is simple: since D is computable, there is some program p
of size O(1) that computes it. Hence every x can be described by C(x)
together with p

• Kolmogorov complexity has a very simple definition but very strong
properties!

Is Kolmogorov Complexity Computable?

• Kolmogorov complexity corresponds to a compression scheme where
the de-compressor is implemented by a universal Turing machine U

• Nice property: The maximum to which we can compress any string x
is roughly K(x)

• However the following fundamental question about the compression
scheme remains: given a string x, can we compute how much we can
compress it?

• Answer, sadly, is no! But the proof is very elegant, and is a version of
Berry’s Paradox

Berry’s Paradox

• Consider the expression “The smallest positive integer not definable
in under sixty letters”

• This expression has 57 letters, so if “definability” has a clear meaning,
we get a contradiction

• Let N be the value of the expression
• We have that N cannot be defined in under 60 letters
• However, we have just given an expression with 57 letters that defines it!

• We are led to the conclusion that “definability” cannot have a clear
meaning when considering expressions such as the above

• An argument of a very similar flavour can be applied to Kolmogorov
complexity

Uncomputability of Kolmogorov Complexity

• Suppose, for the sake of contradiction, that there is a TM M that computes
K

• Define a TM N that accepts x iff K(x) ≥ n
• By Basic Property (2) of K complexity, N accepts at least one string for each input

length n
• Now define a sequence of strings {xn}, |xn|=n, as follows

• For each n, xn is the lexicographically first string of length n that N accepts
• Note that we can compute xn given n by simulating N on strings of length n in lex

order and outputting the first such string it accepts
• This implies that K(xn) ≤ log(n) + O(1)
• But, by definition of xn, K(xn) ≥ n for each n, which is a contradiction for large enough

n

From Computation to Proofs

• These seemingly elementary considerations about Kolmogorov
complexity point to deep issues in the foundations of mathematics!

• Recall Godel’s First Incompleteness Theorem: No consistent
effectively axiomatizable proof system can prove all truths about the
arithmetic of natural numbers

• We can get strong incompleteness results by arguing about
Kolmogorov complexity in a similar way to how we showed
uncomputability

The Deep Intractability of Kolmogorov
Complexity

• Theorem [Chaitin]: Let X be any effectively axiomatizable sound proof
system. There are only finitely many statements of the form “K(x) ≥
m” that can be proved in X!

• Proof: Suppose, for the sake of contradiction, that there are infinitely
many statements of the form “K(x) ≥ m” that are provable in X. This
implies that there are infinitely many m for which some statement
“K(x) ≥ m” is provable in X. Given m, we can computably find an x
such that “K(x) ≥ m” is provable in X by enumerating potential proofs
of such statements in parallel until we find an actual one. But this x
has K(x) ≤ log(m) + O(1), and for large enough m, this contradicts
K(x) ≥ m (which is implied by the soundness of X)

Takeaways

• Kolmogorov complexity provides a natural measure of “inherent
compressibility of a string”

• However, Kolmogorov complexity is not computable, and as a
consequence, the corresponding compression scheme does not have
an efficient compressor

• Kolmogorov complexity seems on the surface just to be an
elementary concept about data compression, but it leads to deep
insights into the foundations of mathematics

Plan of Talk

• Motivation
• Intro to Kolmogorov Complexity
• Resource-Bounded Variants
• Learning
• Cryptography

Kolmogorov Complexity with Resource
Bounds

• Kolmogorov complexity is not very usable in practice for data
compression

• The de-compressor has no a priori time bound
• The compressor is not even computable!

• We consider versions where the de-compressor is more efficient
• Given polynomial time bound t, let Kt(x) = min{ |p| : U(p) = x in at

most t(|x|) steps}
• Note that de-compressor now runs in polynomial time in the size of

the source data

Does Near-Optimality Still Hold?

• Nearly
• Proposition: Suppose there is a compression scheme with compressor

C and de-compressor D, where the de-compressor D runs in time t (as
a function of the length of its output). Then for each x, KO(t log(t))(x) ≤
C(x) + O(1)

• Proof: Exactly the same as the proof of the corresponding Proposition
for standard Kolmogorov complexity, except that we now use a time-
efficient universal TM that simulates a time t TM in time O(t log(t))

The Complexity of Compression

• Time-bounded Kolmogorov complexity yields a “near-optimal”
compression scheme with polynomial-time de-compression

• Key question: can compression be done in polynomial time? This
would make the compression scheme ideal for use in a resource-
bounded world

• For unbounded Kolmogorov complexity, we could prove that
compression could not be done efficiently, or even computably

• However, this proof does not directly carry over to the resource-
bounded setting

NP vs P

• Recall the NP vs P problem: is every computational problem where
solutions are poly-time verifiable also poly-time solvable?

• This is the main question of theoretical computer science, and one of
the 6 unsolved Clay Millennium Problems

• NP vs P turns out to be closely connected to the question of whether
the Kt compression scheme has an efficient compressor!

The Connection

• If NP=P, then the Kt scheme does have an efficient compressor
• Guess the smallest program p for which U(p) outputs x within t(|x|) steps
• Verifying that p is the smallest program isn’t obviously polynomial time, as we

need to check if there exists a smaller program that works
• However, the assumption that NP=P can be used to do this check in poly time!

Then, by using the assumption again, we can find the smallest program in
polynomial time

• However, most researchers believe that NP ≠ P. What then?
• This relates to a central open question about Kolmogorov complexity:

is Kt NP-hard to compute? If so, then NP = P if and only if the Kt

scheme has an efficient compressor!

Takeaways

• By defining resource-bounded versions of Kolmogorov complexity, we
obtain compression schemes that satisfy a version of near-optimality
while being having poly-time decompression algorithms

• Whether these compression schemes also have poly-time
compression algorithms is closely related to the NP vs P problem

• Important open problem: Is computing Kt complexity NP-hard? If so,
whether the corresponding compression scheme has poly-time
compression is equivalent to NP ≠ P

Plan of Talk

• Motivation
• Intro to Kolmogorov Complexity
• Resource-Bounded Variants
• Learning
• Cryptography

The Problem of Induction

• Learning theory, as well as the process of doing science itself, are
deeply concerned with the problem of induction: how to extrapolate
a pattern based on limited observations?

• Ray Solomonoff showed how to solve the problem of induction in a
mathematically rigorous way by using the tools of Kolmogorov
complexity

The Setting

• We model observations in the most simple way possible – as a
sequence of bits

• Given an observed sequence x, prediction corresponds to extending
this sequence in a meaningful way

• Assumption: sequence is produced by some computable process that
is deterministic

• Justification: By the Universal Church-Turing thesis, processes that occur in
Nature can be modelled as computable

• Challenge: There can be several different computable processes that
are consistent with the observations but yet make different
predictions

Occam’s Razor

• The principle of Occam’s Razor says that the simplest explanations are most
likely

• “Simple” = “has low Kolmogorov complexity”
• Example: For the sequence 01010101010101, the most reasonable prediction for the

next bit is 0, but the prediction of 1 should not be ruled out
• But how do we weight explanations according to their simplicity?

• Use a Bayesian approach by defining the universal prior on observations as follows:
to generate an observation sequence of length n, generate a program p with
probability proportional to 2-!p! and then output the first n bits of U(p, ε)

• We need to compute the probability that a computable process p is
consistent with observation sequence x – this can now be done using
Bayes’ rule

Solomonoff Induction

• Solomonoff Induction provides a mathematically rigorous framework for
induction

• Pros
• Framework is conceptually clean and insightful
• Mathematically rigorous guarantees can be shown on the accuracy of predictions

• Con
• The induction process is itself uncomputable because Kolmogorov complexity is

uncomputable
• However, by using computable approximations of Kolmogorov complexity,

such as resource-bounded variants, Solomonoff induction has been
implemented in practice by scientists such as Hutter and Schmidhuber

Takeaways

• Kolmogorov complexity is useful for providing foundations for
learning in a very general sense

• This is done by using Solomonoff induction: Bayesian learning with a
universal prior inspired by Occam’s Razor

• Conceptually clean framework with mathematically rigorous
guarantees, and variants of it have been shown to be useful in
practice

Plan of Talk

• Motivation
• Intro to Kolmogorov Complexity
• Resource-Bounded Variants
• Learning
• Cryptography

Cryptography and Compression

• On the surface, it might not be obvious why crypto is related to the
theory of compression

• However, pseudo-random generators are essential to encryption and
other cryptographic tasks

• A pseudo-random generator (PRG) maps short random “seeds” to longer
“pseudo-random” strings that are computational indistinguishable from
random strings

• We can think of a PRG as a sort of de-compressor, and correspondingly the
outputs of a PRG are in principle compressible

• The security of a PRG relies on the compression not being doable efficiently

Cryptography and Compression

• Pseudo-randomness implies the hardness of compression, but can
PRGs be based on the hardness of compression?

• A very recent line of work (by Liu-Pass, Ren-S, Ilango-Ren-S) aims to
do precisely this, by basing PRGs (in fact, the equivalent notion of
one-way functions) on the average-case hardness of time-bounded
Kolmogorov complexity Kt

Average-Case Hardness

• Typically, complexity theory deals with worst-case hardness, i.e., a
computational problem is considered hard if there is no efficient
algorithm solving it correctly on all instances

• But these hard instances may be rare or hard to find, so this is not always a
satisfactory notion of hardness

• Average-case hardness studies hardness with respect to distributions
on inputs

• A problem L is considered to be average-case hard over distribution D
if no efficient algorithm solves L correctly with high probability on
instances sampled from D

Average-Case Hardness Assumptions on Kt

• Recall that the Kt problem is the problem of computing the t-bounded
Kolmogorov complexity of a string

• How do we model the average-case hardness of Kt?
• Hardness over the uniform distribution is natural to consider
• But more generally, we could consider hardness over any samplable

distribution, i.e., a distribution sampled by a polynomial-time algorithm

• Remarkably, both of these notions of average-case hardness lead to
equivalences with the existence of PRGs!

Pseudo-randomness is Equivalent to the
Hardness of Compression

• Theorem [Liu-Pass]: PRGs exist if and only if Kt is hard over the
uniform distribution

• Theorem [Ilango-Ren-S]: PRGs exist if and only if there is a samplable
distribution D such that Kt is hard to approximate over D

• These results are the first ones to give an equivalence between PRGs
and hardness for a natural problem, i.e., Kt

• It is well-known that the hardness of problems such as Factoring or Learning
with Errors implies the existence of PRGs, but these implications are not
known to be equivalences

Takeaways

• There is an intuitive link between pseudo-randomness and
compression – the outputs of PRGs are compressible in principle but
this compression needs to be intractable in order for PRGs to be
secure

• In recent work, this intuitive link has been turned into formal
characterizations of pseudo-randomness in cryptography by average-
case hardness of the Kt problem

Conclusion

• Motivated by the goal of creating a theory of compression for
individual strings, we defined Kolmogorov complexity and its variants

• These notions turn out to be philosophically deep and have relevance
to fundamental problems in many areas of computer science,
including complexity theory, learning and cryptography

• They also lead to intriguing open problems

Open Problems

• Is Kt NP-hard to compute, for polynomially bounded t?
• Are there near-optimal compression schemes with poly-time

computable compressors and de-compressors?

	The Complexity of Compression
	Plan of Talk
	Plan of Talk
	Data Compression
	Shannon’s Theory
	Inherent Compressibility
	Plan of Talk
	Foundations of Compressibility
	Defining Kolmogorov Complexity
	Basic Properties
	Near-Optimality
	Is Kolmogorov Complexity Computable?
	Berry’s Paradox
	Uncomputability of Kolmogorov Complexity
	From Computation to Proofs
	The Deep Intractability of Kolmogorov Complexity
	Takeaways
	Plan of Talk
	Kolmogorov Complexity with Resource Bounds
	Does Near-Optimality Still Hold?
	The Complexity of Compression
	NP vs P
	The Connection
	Takeaways
	Plan of Talk
	The Problem of Induction
	The Setting
	Occam’s Razor
	Solomonoff Induction
	Takeaways
	Plan of Talk
	Cryptography and Compression
	Cryptography and Compression
	Average-Case Hardness
	Average-Case Hardness Assumptions on Kt
	Pseudo-randomness is Equivalent to the Hardness of Compression
	Takeaways
	Conclusion
	Open Problems

