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Data Compression

• Data compression is a fundamental task in computer science
• Communication: When sending data across a communication channel, we 

would like it to be as compact as possible to save on time and space costs
• Learning: At a high level, the main goal in learning is to find a compact 

hypothesis that explains the training data and performs well on the test data
• Cryptography: Encryption relies on the ability to efficiently produce 

pseudorandom strings that are indistinguishable from random strings, though 
pseudorandom strings are compressible in principle and random strings are 
not

• Theoretical foundations for data compression
• How do we characterize the inherent compressibility of a dataset?
• Is there an efficient procedure to optimally compress a dataset?



Shannon’s Theory 

• Shannon’s theory of source coding provides good answers to these 
questions when we are dealing with distributions on data

• In this case, we know that the entropy of a distribution is the optimal 
expected compression length, and the efficient Huffman coding procedure 
achieves this

• Useful if there is a reasonable way to model distributions, eg., the Zipf law on 
natural language utterances

• But what if we have no prior knowledge of this form, and we are interested in 
the inherent compressibility of data (modelled simply as a finite string)?



Inherent Compressibility

• It is clear that some strings should be much compressible than others, 
eg., a string of N zeroes should be more compressible than a random 
string

• Explicit redundancies in strings, such as re-occurring patterns, are 
exploited in algorithms such as the Lempel-Ziv algorithm and its 
variants

• But there could be redundancy that is not based on repetition
• Eg., consider the strings “3141592653” and “2718281828”
• Anyone with a basic knowledge of calculus can see that these are easily 

distinguishable from random 10-digit strings 
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Foundations of Compressibility

• A compression scheme over an alphabet Σ is a pair of functions C, D: 
Σ* → Σ* such that for all x in Σ*, D(C(x)) = x, and ideally

• The compressor C is close to optimal in that |C(x)| is not much larger than 
|C’(x)| for every x and every compression scheme C’

• The de-compressor D is (efficiently) computable
• C is (efficiently) computable

• These criteria are in tension with each other. For now we prioritize 
optimality, and define a measure called Kolmogorov complexity which 
captures the inherent compressibility of a string



Defining Kolmogorov Complexity

• Let U be a fixed universal Turing machine
• For any string x in Σ*, K(x) is min {|p|: U(p, ε) = x}
• Intuitively, K(x) is the size of the smallest program that produces x 

when run on the empty string
• Examples

• K(0N) ≤ log(N) + O(1), since we can describe 0N (in a way that makes sense to a 
computable de-compressor) by using log(N) bits to describe N and O(1) bits to 
describe a program that outputs 0N given N

• K(πN) ≤ log(N) + O(1), where πN is the string consisting of the first N bits of π



Basic Properties

• (1) For every x in Σ*, K(x) ≤ |x| + O(1)
• Any string x can be described by itself together with a program p of constant 

size that just prints x out

• (2) For each integer n, there is x of length n such that K(x) ≥ n 
• Straightforward counting argument
• For any i, there are at most 2i strings of Kolmogorov complexity i (since there 

are at most 2i descriptions of length i)
• So there are at most 2n-1 strings of Kolmogorov complexity < n
• By pigeonhole principle, there is a string x of length n with K(x) ≥ n



Near-Optimality

• For any compression scheme with compressor C and computable de-
compressor D, for every string x, K(x) ≤ C(x) + O(1)

• The reason is simple: since D is computable, there is some program p 
of size O(1) that computes it. Hence every x can be described by C(x)
together with p

• Kolmogorov complexity has a very simple definition but very strong 
properties!



Is Kolmogorov Complexity Computable?

• Kolmogorov complexity corresponds to a compression scheme where 
the de-compressor is implemented by a universal Turing machine U

• Nice property: The maximum to which we can compress any string x
is roughly K(x)

• However the following fundamental question about the compression 
scheme remains: given a string x, can we compute how much we can 
compress it?

• Answer, sadly, is no! But the proof is very elegant, and is a version of 
Berry’s Paradox



Berry’s Paradox

• Consider the expression “The smallest positive integer not definable 
in under sixty letters”

• This expression has 57 letters, so if “definability” has a clear meaning, 
we get a contradiction

• Let N be the value of the expression
• We have that N cannot be defined in under 60 letters
• However, we have just given an expression with 57 letters that defines it!

• We are led to the conclusion that “definability” cannot have a clear 
meaning when considering expressions such as the above

• An argument of a very similar flavour can be applied to Kolmogorov 
complexity



Uncomputability of Kolmogorov Complexity

• Suppose, for the sake of contradiction, that there is a TM M that computes 
K

• Define a TM N that accepts x iff K(x) ≥ n
• By Basic Property (2) of K complexity, N accepts at least one string for each input 

length n
• Now define a sequence of strings {xn}, |xn|=n, as follows

• For each n, xn is the lexicographically first string of length n that N accepts
• Note that we can compute xn given n by simulating N on strings of length n in lex

order and outputting the first such string it accepts
• This implies that K(xn) ≤ log(n) + O(1)
• But, by definition of xn, K(xn) ≥ n for each n, which is a contradiction for large enough 

n



From Computation to Proofs

• These seemingly elementary considerations about Kolmogorov 
complexity point to deep issues in the foundations of mathematics!

• Recall Godel’s First Incompleteness Theorem: No consistent 
effectively axiomatizable proof system can prove all truths about the 
arithmetic of natural numbers

• We can get strong incompleteness results by arguing about 
Kolmogorov complexity in a similar way to how we showed 
uncomputability



The Deep Intractability of Kolmogorov 
Complexity

• Theorem [Chaitin]: Let X be any effectively axiomatizable sound proof 
system. There are only finitely many statements of the form “K(x) ≥ 
m” that can be proved in X!

• Proof: Suppose, for the sake of contradiction, that there are infinitely 
many statements of the form “K(x) ≥ m” that are provable in X. This 
implies that there are infinitely many m for which some statement 
“K(x) ≥ m” is provable in X. Given m, we can computably find an x
such that “K(x) ≥ m” is provable in X by enumerating potential proofs 
of such statements in parallel until we find an actual one. But this x
has K(x) ≤ log(m) + O(1), and for large enough m, this contradicts    
K(x) ≥ m (which is implied by the soundness of X)



Takeaways

• Kolmogorov complexity provides a natural measure of “inherent 
compressibility of a string”

• However, Kolmogorov complexity is not computable, and as a 
consequence, the corresponding compression scheme does not have 
an efficient compressor

• Kolmogorov complexity seems on the surface just to be an 
elementary concept about data compression, but it leads to deep 
insights into the foundations of mathematics
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Kolmogorov Complexity with Resource 
Bounds

• Kolmogorov complexity is not very usable in practice for data 
compression 

• The de-compressor has no a priori time bound
• The compressor is not even computable!

• We consider versions where the de-compressor is more efficient
• Given polynomial time bound t, let Kt(x) = min{ |p| : U(p) = x in at 

most t(|x|) steps}
• Note that de-compressor now runs in polynomial time in the size of 

the source data



Does Near-Optimality Still Hold?

• Nearly 
• Proposition: Suppose there is a compression scheme with compressor 

C and de-compressor D, where the de-compressor D runs in time t (as 
a function of the length of its output). Then for each x, KO(t log(t))(x) ≤ 
C(x) + O(1)

• Proof: Exactly the same as the proof of the corresponding Proposition 
for standard Kolmogorov complexity, except that we now use a time-
efficient universal TM that simulates a time t TM in time O(t log(t))



The Complexity of Compression

• Time-bounded Kolmogorov complexity yields a “near-optimal” 
compression scheme with polynomial-time de-compression

• Key question: can compression be done in polynomial time? This 
would make the compression scheme ideal for use in a resource-
bounded world

• For unbounded Kolmogorov complexity, we could prove that 
compression could not be done efficiently, or even computably

• However, this proof does not directly carry over to the resource-
bounded setting



NP vs P 

• Recall the NP vs P problem: is every computational problem where 
solutions are poly-time verifiable also poly-time solvable?

• This is the main question of theoretical computer science, and one of 
the 6 unsolved Clay Millennium Problems 

• NP vs P turns out to be closely connected to the question of whether 
the Kt compression scheme has an efficient compressor!



The Connection

• If NP=P, then the Kt scheme does have an efficient compressor
• Guess the smallest program p for which U(p) outputs x within t(|x|) steps
• Verifying that p is the smallest program isn’t obviously polynomial time, as we 

need to check if there exists a smaller program that works
• However, the assumption that NP=P can be used to do this check in poly time! 

Then, by using the assumption again, we can find the smallest program in 
polynomial time

• However, most researchers believe that NP ≠ P. What then?
• This relates to a central open question about Kolmogorov complexity: 

is Kt NP-hard to compute? If so, then NP = P if and only if the Kt

scheme has an efficient compressor!



Takeaways

• By defining resource-bounded versions of Kolmogorov complexity, we 
obtain compression schemes that satisfy a version of near-optimality 
while being having poly-time decompression algorithms

• Whether these compression schemes also have poly-time 
compression algorithms is closely related to the NP vs P problem

• Important open problem: Is computing Kt complexity NP-hard? If so, 
whether the corresponding compression scheme has poly-time 
compression is equivalent to NP ≠ P



Plan of Talk

• Motivation
• Intro to Kolmogorov Complexity
• Resource-Bounded Variants
• Learning
• Cryptography



The Problem of Induction

• Learning theory, as well as the process of doing science itself, are 
deeply concerned with the problem of induction: how to extrapolate 
a pattern based on limited observations?

• Ray Solomonoff showed how to solve the problem of induction in a 
mathematically rigorous way by using the tools of Kolmogorov 
complexity



The Setting

• We model observations in the most simple way possible – as a 
sequence of bits

• Given an observed sequence x, prediction corresponds to extending
this sequence in a meaningful way

• Assumption: sequence is produced by some computable process that 
is deterministic 

• Justification: By the Universal Church-Turing thesis, processes that occur in 
Nature can be modelled as computable

• Challenge: There can be several different computable processes that 
are consistent with the observations but yet make different 
predictions



Occam’s Razor

• The principle of Occam’s Razor says that the simplest explanations are most 
likely

• “Simple” = “has low Kolmogorov complexity”
• Example: For the sequence 01010101010101, the most reasonable prediction for the 

next bit is 0, but the prediction of 1 should not be ruled out
• But how do we weight explanations according to their simplicity?

• Use a Bayesian approach by defining the universal prior on observations as follows: 
to generate an observation sequence of length n, generate a program p with 
probability proportional to 2-!p! and then output the first n bits of U(p, ε)

• We need to compute the probability that a computable process p is 
consistent with observation sequence x – this can now be done using 
Bayes’ rule



Solomonoff Induction

• Solomonoff Induction provides a mathematically rigorous framework for 
induction

• Pros
• Framework is conceptually clean and insightful
• Mathematically rigorous guarantees can be shown on the accuracy of predictions

• Con
• The induction process is itself uncomputable because Kolmogorov complexity is 

uncomputable
• However, by using computable approximations of Kolmogorov complexity, 

such as resource-bounded variants, Solomonoff induction has been 
implemented in practice by scientists such as Hutter and Schmidhuber



Takeaways

• Kolmogorov complexity is useful for providing foundations for 
learning in a very general sense

• This is done by using Solomonoff induction: Bayesian learning with a 
universal prior inspired by Occam’s Razor

• Conceptually clean framework with mathematically rigorous 
guarantees, and variants of it have been shown to be useful in 
practice
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Cryptography and Compression

• On the surface, it might not be obvious why crypto is related to the 
theory of compression

• However, pseudo-random generators are essential to encryption and 
other cryptographic tasks

• A pseudo-random generator (PRG) maps short random “seeds” to longer 
“pseudo-random” strings that are computational indistinguishable from 
random strings

• We can think of a PRG as a sort of de-compressor, and correspondingly the 
outputs of a PRG are in principle compressible

• The security of a PRG relies on the compression not being doable efficiently



Cryptography and Compression

• Pseudo-randomness implies the hardness of compression, but can 
PRGs be based on the hardness of compression?

• A very recent line of work (by Liu-Pass, Ren-S, Ilango-Ren-S) aims to 
do precisely this, by basing PRGs (in fact, the equivalent notion of 
one-way functions) on the average-case hardness of time-bounded 
Kolmogorov complexity Kt



Average-Case Hardness

• Typically, complexity theory deals with worst-case hardness, i.e., a 
computational problem is considered hard if there is no efficient 
algorithm solving it correctly on all instances

• But these hard instances may be rare or hard to find, so this is not always a 
satisfactory notion of hardness

• Average-case hardness studies hardness with respect to distributions
on inputs

• A problem L is considered to be average-case hard over distribution D
if no efficient algorithm solves L correctly with high probability on 
instances sampled from D



Average-Case Hardness Assumptions on Kt

• Recall that the Kt problem is the problem of computing the t-bounded 
Kolmogorov complexity of a string

• How do we model the average-case hardness of Kt?
• Hardness over the uniform distribution is natural to consider
• But more generally, we could consider hardness over any samplable

distribution, i.e., a distribution sampled by a polynomial-time algorithm

• Remarkably, both of these notions of average-case hardness lead to 
equivalences with the existence of PRGs!



Pseudo-randomness is Equivalent to the 
Hardness of Compression

• Theorem [Liu-Pass]: PRGs exist if and only if Kt is hard over the 
uniform distribution

• Theorem [Ilango-Ren-S]: PRGs exist if and only if there is a samplable
distribution D such that Kt is hard to approximate over D

• These results are the first ones to give an equivalence between PRGs 
and hardness for a natural problem, i.e., Kt

• It is well-known that the hardness of problems such as Factoring or Learning 
with Errors implies the existence of PRGs, but these implications are not 
known to be equivalences



Takeaways

• There is an intuitive link between pseudo-randomness and 
compression – the outputs of PRGs are compressible in principle but 
this compression needs to be intractable in order for PRGs to be 
secure

• In recent work, this intuitive link has been turned into formal 
characterizations of pseudo-randomness in cryptography by average-
case hardness of the Kt problem



Conclusion

• Motivated by the goal of creating a theory of compression for 
individual strings, we defined Kolmogorov complexity and its variants

• These notions turn out to be philosophically deep and have relevance 
to fundamental problems in many areas of computer science, 
including complexity theory, learning and cryptography

• They also lead to intriguing open problems



Open Problems

• Is Kt NP-hard to compute, for polynomially bounded t?
• Are there near-optimal compression schemes with poly-time 

computable compressors and de-compressors?
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